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Several dynamic mixed problems of elasticity theory, hydromechanics , and mathema- 
tical ph sits are reducible to the integral equations which are the subject of the present 
paper. 

y”.p 
e mte ral equations to be investigated are characterized by a kernel k (t) 

which does not ecrease as t--t C.Q 
This fact makes it difficult to analyze the inte ral equations and excludes me direct 

application of the asymptotic expansion method H 
the use of the Wiener-Hopf equations. 

eveloped in (’ a] which is based on 

We shall investi 
P 

ate a certain class of integral equation with the above properties, 
propae a method or constructing their solutions, 
dynamic contact problems. 

and describe certain applications to 

1. Let us consider an integral equation of the form 

j k(sGJg(5)G =ncosqz, Jzl< a (1.1) 
--a 

k(t) = ~I+)eos utdu 0.2) 
0 

Here K (z> is an even function meromorphic in the complex plane which has no 
zeros or poles outside the coordinate axes and is real on the real axis, 

We shall assume (see Remarks 4.2 and 4.2) that the asymptotic behavior of the ima- 
ginary zeros and poles of the upper half-plane is described by the relations 

2, - i (Bn + b) + 0 (n-l), L - i lb + d + 0 (n-9, n -+ = 
l%nl -Cc I.4 O<b -kY-4 (1.3) 

The positive part of the real axis contains m zeros and p poles (which we denote by 
subscripts), i. e. 

Xmz,= 0, n=i,2,. . .,m; ImCn=O, k=f,2 ,.s.) p 

We assume that there are no multiple zeros and poles. Clearly, 

Let us introduce a function of the form 

(1.4) 

(I.3 

40 
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which, as we can readily verify by recalling (1.3), exists and is meromorphic in the 
complex plane. 

Lemma 1.1. The estimates 

K(z)-CJzl-2y+O(Z-21), Iargzfn/2J>e>O 

K*(z)-c IZf"+O(Z"), largz7n/Zl>E>O 

K’ (- 21) - cry + 0 (t-y), z-boa 

ffr,--’ (-- Slff ’ -cCtY + 0 (Z’), r= (b-_YW’ 

are valid. 
These estimates were derived by applying the Euler-Maclaur~n summation formulas 

[a] to the logarithms of the functions irl (z), K, (z) taken in the sense of (1.5). In- 
terpreting integral (1.2) as a principal value, 
of the fnrm 

we can express it as a series in residues 

It is clear from properties (1.3) and Lemma 1.1 that 

k (t) = 0 (F-l), y =j= 0.5; k (t) = 0 (hit), y = 0.5, t. -to (1.7) 

and that series (1.6) converges uniformly for t > 8 > 0. 
The kernel is merely bounded, rather than decreasing, at infinity (see Remark 4.1). 

2. We shall attempt to find the solution of the integral equation in the form 

q(E) = B,, cos 11% + 2 $ &ln cos z,E (2.1) 
I=1 

Here q (8 EL, (-a, a), p <T- l, It is clear that series (2.1) converges uni- 
formly in any strictly interior interval to [---a, Ul, if (5,) E &,,p > 1, where 
q (E) has singularities of order not exceeding t-Y at the points -a, a . 

Bearing the above remarks in mind and comparing with (1.‘7), we conclude that it is 
possible to compute the integral on the left side of (1.1) by making use of expansions 
(1.6), (2.1). Making use of the results of [A], we arrive at the following system of lin- 
ear algebraic equations equivalent to integral equations (1.1): 

We note that the above system has the following properties. 

1. Since the function q (E) is real only if 

Im zleiz~a = 0 (I = 1, 2,. . ., m) 
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it follows that the system is real. 

2. If m > 0 or p > 0, then the coefficients of the infinite matrix have no limit 

as a+w. This distinguishes system (2.2), (2.3) in an important way from the simi- 
lar system obtained in [‘us]. This means, in turn, that if we have a solution of the 
equation on a semiaxis we cannot be certain that it is the limit of the solution of Eq. 
(1.1) as a --too. 

We conclude that the method of Ir~2~zdoes not enable us in this case to construct an 
approximate solution of Eq. (1.1). 

In order to investigate system (2.2), (2.3) we rewrite it in the matrix form 

[A + R (a)lX = D (2.4) 

A = {a,, 11 = {(C, - zd-% X= hE~p9 P>i 

B (4 = VJ,, I> = 
exp 2aiq + exp (- 2icrn) 

+ 
exp24i(z~-C6,) 

fr + ZI 5r- z1 
(rci, 2, . . ,, p) 

B(a) = {b,, [} = s (r=p+l,. . .) (2.5) 

Here D = {d,} is th e se q uence appearing in the right sides of Eqs. (2.2), (2.3). 

3. The matrix A +,B (a) g enerates a certain operator which maps the elements of 
the space I,, p > 1 into some space 1,. Let us investigate the properties of this mat- 
rix. 

The ore m 3.1. The operator B (a), a > 0 is completely continuous as an opera- 
tor acting in I,, p > 1. 

It is sufficient to show that the order of the principal term of the sequence B (a)X, 
(X E $) as r--t 00 is r-r. This is easily accomplished. 

We begin by showing that the operator A has the bounded inverse A-r which acts in 
some 1,. Let us consider an integral of the form 

I 1 
Jn = 2ni K+’ (- z,) s K, (- 1) dt 

(t - rl)(z - t) 
%I 

Here C, is a circle with its center at the origin and the radius R,, 1~~1 < R,< IE, n+ll. 

If we make n--t 00, then by virtue of the estimates of the Lemma, J,-+ 0. Using resi- 
due theory to compute the integral, we obtain a relation of the form 

jl [K -‘(--)]‘K ‘(iz,)(r + r + P 
_q)(c 

r 
__) =i-K+(-q;$(--) K+‘(- Zl) 

Taking the limit of this expression as t--t L,, n--t zr,, we obtain the equations 

Here 

T1.t”r. k = 
t=1 

1 
f1.r = (K+-1 (- f,)]‘K+’ (- Zl) (5, - z~) 

(3.1) 

(3.2) 
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Introducing the notation A-’ = 01,~)~ we find that relation (3.1) implies that A-’ 
is the left inverse of the matrix A. In exactly the same way we can establish the fact 
that this matrix is also the right inverse of A. 

Theorem 3.2. The matrix A-‘&r the unique two-sided inverse ofthe matrix A (e.g. 
see 16]). 

This theorem implies that the matrix A does not have a bilateral inverse other than 
that already constructed, for which the product A-a.4 A-1 is associative. 

To prove this we must demonstrate the associativity of the product A-i AA-‘, i.e. we 
must establish the absolute convergence of a double series. This is easy to do by apply- 
ing the estimates of the lemma. 

Theorem 3.3. If d, = O’ (r-l) (r -+ 00 ), then A” D is the unique solution of 
the equation A X . = D . 

It is sufficient 1’1 to establish the associativity of the product ,AA-‘D. 
Theorem 3.4. When acting in l,, p > (1 - y)-l the operator A-‘B, is comp- 

letely continuous. 
By applying the estimates of the lemma to the elements of the sequence A-%X, 

X cl,, we obtain the relation 

I Yp I = II X Ii 0 (0 (r--, =J) 

which ensures the compactness of the set Y = A-‘BX in I,, p > (1 - y)-i. 
Theorems 3.1 - 3.4 enable us to represent Eq. (2.4)as a second-order equation with 

a completely continuous operator in I, 

X = -A-‘B (a)X +A-‘D (3.3) 

4. Let us consider the construction of the asymptotic solution of integral equation 
(1.1) for a + 00. As we see from (2. B), the elements of the matrix B (z) are entire 
functions. Some of them vanish as Rez -* 00 ; the others are bounded. 

Let us carry out the following matrix decomposition: 

B (2) = J’, (2) + Qp (2) +B, (2) (4.1) 

The matrices on the right consist of the following elements: 

(4.2) 

P 
m = 

t 
(L + qP exp *z+ (I=&. . ., m; r=1, 2,...) 

r, 1 0 (l=mfl,. . .) 

qr 7 = [(Cr + W’ + (5f - 4 -l exp 2ziq] exp (- 2zi&.) (r = 1, . . ., p) 
0, @=I,2 ,...; r=p+ 1,. ..) 

br ; = 
{ 

(5, + z~)-~exp Bzirr (r = p + 1, . . .; I = m + 1, . . .) 
0 

It is obvious that all of the elements of the matrix B. (2) tend to zero as Rez --t 00. 
Thus, having constructed the solution of the infinite system 

[A + Pm (4 + Qp (4lY (m, p) =D (4.3) 

we arrive at the problem considered in i61. 
The matrix A in Eq, (4.3) is perturbed byminfinite columns of the matrix p, and 

by p infinite rows of the matrix 9,. Solution of the problem of perturbation of -an 
infinite matrix by a finite number of columns is considered in [s] where we construct 
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the solution of the equation 

A, Y (m, 0) E [A +P,lY ' -. - 

It is therefore necessary to construct the solution 

[A, + QJY (w P) 

(m, U) =u 

of a system of the form 

= D 

(4.4) 

(4.5) 

The following lemma can be proved as in I61 . 

Lem ma 4.1. The solution of the system 

[A + Qn @)I T, =D 

is given by the recursion formula 

(4.6) 

T, = {tr (n)} = 11 (n - 1) - $1,~;;“;; } , To = {tl (0)) 

Here 

a(n) = (Qn - Qn-I) Tn-I, -4-l = (21, ,, (0)) 

IA+ QP= {xm(W = 1 .%,m(k---)- T'shi(kC6 
- 1) &&-- 1) 

k, k (k - i) 1 (4.7) 

{4l* 44 = ml - Qn-4 (A + e,j-1 

The solution may not exist on a countable set of zeros of the function 1 + 6,,, 

(n - 1). The lemma is valid if all the series appearing in (4.7) converge. This does, 
in fat t , happen in our case. 

Applying Lemma 4.1 to Eq. (4.5). we can rewrite initial equation (2.4) as 

[A, +B, (z)lX =D (4.8) 

The solution of this equation for B, s 0 is clearly Y (m, p). The matrix A,-1 is 
also known. We can therefore a 
solution in effective form throug R 

ply the results of [‘By ] to Eq. (4.8) and construct its 
out the entire right half-plane. This has the following 

significance. We can use the method of successive approximations to construct the 
solution of system (4.8) for sufficiently large Rez . Expression (3.3) and the analyti- 
city of the coefficients with respect to 2 imply that the resolvent has pole singulari- 
ties only. 

By the method of I61 we can continue the resolvent into the entire domain Rez > 0 
For z = a we obtain the solution of system (2.4). Applying the method of [&I, we 
conclude that the asymptotic properties of system (4.8) are described by the relation 

X = Y (m, p) + 0 (eJrp (-2~ I h+~j) (4.9) 

This means that it is necessary to use Y (m, p) to construct the zeroth term of the 
as mptotic form of the solution of Eq. (1. i) for a + oo , and that the effectiveness 
o iy such a solution diminishes with decreasing Iz,,,+r). 

Remark 4.1. If it turns out that a pole of the function K (2,’ is of multiplicity n, 
then a polynomial of degree n - 1 arises in front of the corresponding harmonic in 
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(1.6). A multiple pole on the real axis is inter reted as the limitin position of the 
poles sliding along the real axis. This is one 0 P the methods of regu acizing the inte- B 
graf. 

Remark 4.2, If it turns out that a zero of the function K (2) is of multiplicity n, 
then a polynomial of order l% - 1 arises in front of the corms 

P 
onding harmonic in 

(2.1) ; if moreover, 
mcreases by unity. 

the zero is equal to 9, then the degree o the above polynomial 

Rem ark 4.3, The above properties of the kernel of integral equation (1.1) do not 
prevent us from using the methods of [‘*s] for constructing the asymptotic solution for 
a3 0. 

5. Let us construct the zero&r term of the asymptotic form of the solution far u-+ 03 
in the case where p and m vary from zero to unity. 

1. We set p c m & 0. The zeroth term of the asymptotic form is given by the 
relation Pl 

co 

q(x)=S-Zr: 
,iria e-im ei’l” cos $I” + * (e-2alt,l) 

t=l i (zt ,f ‘W+ (-- 11) + (zt - ?I K+(q) 3 K+’ (- zt) 
(5.0 

The problem of representing this series in effective form and of isolating the singu- 
larities is discussed in .[ila) and elsewhere, and need not be considered here. 

2. Wesetp= 1, m = 0. Construction of the zeroth term of the asymptotic form 
clearly requires us to solve system (4.5) for p = 1, m = 0. 

Let us first construct Y (0, 0) = 
obtain Y (0, 0) in the form 

(~~(0)) = A%. Making use of (2.2), (3.2), we 

t i 

$na ,-iTlU 

Y, (0) = - ~~,+‘I)K+C--‘I) + (y’~)K+(q) 3 K+‘;--lj)- [ 

<I COS qa - iq sin qa 

‘lz-~l~ + 

~0s (51 +rl)a 

+i cl+11 + 

cos G-da 
gl-q )=v--%a] 

1 

K(q) W+-+ WK+'(-- z& - ztf 

Now, making use of Formula (4.7), we compute &,I (0), o (1). This yields relat- 
ions of the form 

e-!3Uit< 

61*~(o)=~~,-1(-t)l’ 3 
ce-it 

(6 cosqa - iq sin qa) Kc (- t) 
?f-- 1% s 

e-wiydrdt 

-CO-k 
~+w(Z+1;1)@+t)f 

(2 Cos qa - iq sin qa) K+ (- z) dz ~ 

w - 2”) (51 i- z) -Z&P- 

02-k 

4 5 e-2oiz dz cos (61 + 1) a cm (Cl--tl)o 
-do i(! K+(z) (61 +41 51+tl + 51-q I 

e-iaCt 

LK+-1(--6d1' ) 

Next, applying Lemma 4.2, we find that gr (1) is given by 
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yi (1) = y,(O) - 
71.1 (O)~U) 
1 + 6,,, (0) 

Thus, the zeroth term of the asymptotic form of the solution of the integral equation 
becomes 

Q (4 = - y$ + 2 g Ul (1) eizra cos Z‘U + 0 (P’zl’) (a -, co) (5.2) 
I=1 

3. We set P = 0, m = i. To construct the zeroth term of me as mptoiic form of the 
solution of the integral equation we need merely solve Eq. (4.4) or m = 1. We can Y 
do this with the aid of a lemma of [“I. 

The solution in this case can be written as 

eI ,(O) 
Yl (I) = Y, to) - Y, (0) F+D ' 

exp 2aiziK+ (II) 
el. 1 (O) =K+'(- zI)(zl + zI) (5.3) 

The value of ~((0) is given by relation (5.1). 
The zeroth term of the as m totic form of the solution can be expressed in the form 

(5.2), where Yr(1) is given y U 5.3), and where the remainder term is of the order 
0 (exp (-2aM)). 

4. Wesetp=i, m = 1. In this case, applving me results of Sect. 2, we can con- 
struct YI (1.1) according to the formula of the case 3. 

The order of the remainder term is 0 (exp (-24~4)). 

G. Let us consider the problem of torsion of an elastic layer of thickness h by a die 
of width 26. We assume that the die vibrates harmonically in such a way that the dis- 
placements of the points directly under the die face are given by the relations 

W” (z, y, t) = Rew (2, y) t+* = cosq 5 cos ot, Y = h, Irl d b (6.1) 

The layer is either (a) rigidly attached to a nondeformable base, or (b) rests on a 
nondeformable base without friction. 

We are required to determine the contact stresses under the die in the case of steady 
vibrations. 

This problem is reducible to the solution of the following boundary value problem for 
the Helmholtz equation: 

Aw+xaw=o, 1x1 coo, 0<y<1 
x2 = po2h2C-l, a=bJh 

w = cos ‘15, 1 x 1 < a, aw/ay=o, l~I>a, y=i 
(a) w=o, 1xl<oc, yzo 

(b) aw/ay=o, 121<00, y=o 

(6.2) 

where p and G are the density and shear modulus of the layer material. 
It-is well known, however, that such a problem is not correctly formulated until the 

conditions at infinity have been specified. 
These conditions will be given in the course of deriving the integral equation of the 

problem. 
We can derive the integral equation of the problem in terms of the contact stresses 

b Fourier transformation. To this end we solve an ancillary boundary value problem 
1. . w ich 1s described by equation and boundary conditions (6.2) everywhere except on the 

boundary y = i, where we have the condition 

awl aY = q (4, IxI<w !/=I (6.3) 
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It Is now easy to verify that the solution of both problems in the Fourier transforms 
W (al Y) is of the form 

(a) W(a, Y) =.s 0 (Co - WO (a, Y) 0 (a) (0.4) 

(4 W(a, y)= ~Q@)=W,(cl,y1C?W 

U==? Jfaa 

(S.5) 

Next, returning to the function w (z, Y) by means of the formula 

1 
W C5 Yl = zjz s W (a, y) edaxda 

r 
WV 

we choose the integration contour I’ in such a way as to ensure fulfillment of the re- 
quired conditions at infinity. 

It is clear that for sufficiency large x in the case of problem (a) and for all x in the 
case of problem (b) the function W, (cc, Y) has a finite number p of poles on the real 
axis which lie symmetrically with respect to the origin. The function WO (a, Y) is 

clearly the Fourier transform of the solution w,, (z, Y) in the case of a “point source” 
(a concentrated force). 

The contour in (6.6) must be chosen in accordance with the required behavior of the 
function Wo(z,Y) as Izl-too. 

Let us consider some examples. 

1. The contour r coincides with the real axis and integral (6.6) is interpreted in 
the sense of a principal value. 

In this case the function w0 (z, Y) for problems (a) and (b) can be expressed in the 
form 

(4 WO@, ~)=0.5 i 

a, 

a,shbkysin&.JzJ + 2 aksIl~lsk&~“‘+ (6.7) 
k=l k=p+l 

co 

08, =ob Y) =0.5 5 bk ch eky sin fk fz [ f 2 bk ch akyeiCAix’ (6.8) 
k=l k==p+l 

bk = ‘v’g=2 

Here a&, b, are certain constants and 5k are the poles of the function WO @, Y) 
corresponding to specific problems (see below); the first p of these poles are real. 

Let us multiply relations (6.7), (6.8) by the time factor eWiO* . It is then clear that 
“departing waves” of the form 

(k Q PI (6.9) 

are not absorbed at infinity, but are reflected and return in the form of “arriving waves” 
of the form 

exp [-& ItI + wl (6.10) 

there is a source at infinity whit lQl 
reted in a different way, i.e we can ima ine that 
generates arriving waves of the form (6. H 0). 

This phenomenon can be inter 
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2. The contour I’ curves above the negative poles and below the positive poles, 
intersecting the real axis at the origin. In this case the function wg (2, y) can be ex- 
pressed in the form 

03 

(4 W (2, y) = 2 ak sh GIVE 
iF,, Id 

, 

k=l 

Departing waves of the form (6.9) are 
the form (6.10) do not arise. 

in this case absorbed at infinity, and waves of 

It is easy to see that in Example 1 the points of the layer oscillate in tie same phase 
as the stimulating force for Y = 1 for all x , 
phase shift. 

while Example 2 is characterized by a 

Choosing the appropriate inte ration contour r in relation (6.6) and introducing 
(6.4) or (6.5) for Y = 1 on the I? . 
in the form (1.1). 

asls of (6.2), we obtain the required integral equation 

From now on we shall choose the contour r as in Example 1. The function K(a) 
then assumes the following values: 

03 

(b) w. (2, Y) = 2 b, ch akye “A”’ (6.11) 

k=l 

(a) K (CC) = u-l tho, (b) K (a) =: a-’ ctha 

The distributionsof zeros and poles of the function SK (a) in the upper half-plane are 
given by 

(a) 2 = i y-,%2 - x2 _ inn f 0 (n-y, 

5, =i V(R” - 0.5)W - x2 N in (n - 0.5) + 0 (n-2) 

(b) in= i l/(n - @.5)Z n2 - xa h in (n - 0.5) + 0 (n-2) 

El = % 5, = i dn%-@ - %a N inn + 0 (0). n&2 

The above relations show that in the case of Problem (a) for small x all the zeros 
and poles of the function R (cc) lie on the imaginary axis. As x increases they begin 
to sink towards the real axis (with their order preserved), The poles reach the teal axis 
first. Combining to form a double pole at zero, they then move away from the origin 
in opposite directions along the real axis. The zeros behave in the same way with in- 
creasing x . For x = 0 we have an ordinary statics problem. In Case (b) the initial 
problem is not correctly posed for x = 0 , On the other hand, if x > 0, then there are 
two poles, one on each side of the origin, lying on the real axis. The zeros, followed 
by the poles, sink towards tie real axis with increasin x , etc. 

The problem of torsion of an infinite elastic shaft o H radius h by a die whose base 
shape varies according to the above law also reduces to integral equation (1.1). The 
function K(a) in this case is of the form 

where 1, (0) is a Bessel function of an imaginar 
The problem of vibration of a plate on the sur Y 

argument. 
ace of an ideal fluid layer (in its ideal 

formulation) also reduces to the above integration equation. In this case 

asha ozh 
K (4) = vcha-osha ’ 

v=----- 
g 

The same class of integral equations subsumes mixed problems on the compression 
and bending of an elastic strip by a vibrating die. 
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Re m a r k 6.1. If the contour I’ in relation (6.6) has been chosen as in Example 2, 
then the corr~po~ing infinite system is of exactly the same form as system (2.19) of 
I41 . This system can be investigated by the method proposed in [sl. 

The author is grateful to I. I. Vorovich and N. A. Rostovtsev for remarks. 
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ASYMPTOTIC SOLUTION OF TliE CONTACT 

FOR A THIN ELASTIC LAYEiR 

Translated by A. Y. 

PROBLEM 

PMM Vol. 33, No. 1, 1969, pp. 61-73 

V. M. ALEKSANDROV 
(Rostov-on-Don) 

(Received April 6, 1968) 

The contact problem of impressing a stamp in an elastic la er of finite thickness h 
lying without friction or adhering rigidly to an undeformable oundation is considered. f 
The frictional forces between the stamp and the surface layer are assumed absent, and 
the surface layer outside the stamp is not loaded. The contact domain P between the 
stamp and the layer is assumed simply connected (3 and fixed. 

An asymptotic solution of the above-mentioned problem has been obtained in I’-*1 
under the assumption that the relative thickness of the layer is sufficiently large, i. e. 
the dimensionless parameter X = h / a, a 
lar e. 

1 

= rlz max H,o for any P and Q 6 P , is 

scheme for constructing the asymptotic solution of the mentioned problem under 
the assumption that the relative thickness of the layer is small has been expounded in 
i’l - 

l ) Simple connectedness is assumed just for simplicity. The asymptotic method ex 
;~m~~~for the solution can be utilized even in the case of a multiply connect J 

oun- 

* 


